Kaspersky Unified Monitoring and Analysis Platform
- About Kaspersky Unified Monitoring and Analysis Platform
- Program architecture
- Installing and removing KUMA
- Program licensing
- About the End User License Agreement
- About the license
- About the License Certificate
- About the license key
- About the key file
- Adding a license key to the program web interface
- Viewing information about an added license key in the program web interface
- Removing a license key in the program web interface
- Integration with other solutions
- Integration with Kaspersky Security Center
- Configuring Kaspersky Security Center integration settings
- Adding a tenant to the list for Kaspersky Security Center integration
- Creating Kaspersky Security Center connection
- Editing Kaspersky Security Center connection
- Deleting Kaspersky Security Center connection
- Working with Kaspersky Security Center tasks
- Importing events from the Kaspersky Security Center database
- Kaspersky Endpoint Detection and Response integration
- Integration with Kaspersky CyberTrace
- Integration with Kaspersky Threat Intelligence Portal
- Integration with R-Vision Incident Response Platform
- Integration with Active Directory
- Connecting over LDAP
- Enabling and disabling LDAP integration
- Adding a tenant to the LDAP server integration list
- Creating an LDAP server connection
- Creating a copy of an LDAP server connection
- Changing an LDAP server connection
- Changing the data update frequency
- Changing the data storage period
- Starting account data update tasks
- Deleting an LDAP server connection
- Authorization with domain accounts
- Connecting over LDAP
- RuCERT integration
- Integration with Security Vision Incident Response Platform
- Kaspersky Industrial CyberSecurity for Networks integration
- Integration with Kaspersky Security Center
- KUMA resources
- KUMA services
- Analytics
- Working with tenants
- Working with incidents
- About the incidents table
- Saving and selecting incident filter configuration
- Deleting incident filter configurations
- Viewing information about an incident
- Incident creation
- Incident processing
- Changing incidents
- Automatic linking of alerts to incidents
- Categories and types of incidents
- Exporting incidents to RuCERT
- Sending incidents involving personal information leaks to RuCERT
- Working in hierarchy mode
- Working with alerts
- Working with events
- Retroscan
- Working with geographic data
- Transferring events from isolated network segments to KUMA
- Managing assets
- Asset categories
- Adding an asset category
- Configuring the table of assets
- Searching assets
- Viewing asset details
- Adding assets
- Assigning a category to an asset
- Editing the parameters of assets
- Deleting assets
- Updating third-party applications and fixing vulnerabilities on Kaspersky Security Center assets
- Moving assets to a selected administration group
- Asset audit
- Managing users
- Managing KUMA
- Contacting Technical Support
- REST API
- Creating a token
- Configuring permissions to access the API
- Authorizing API requests
- Standard error
- Operations
- Viewing a list of active lists on the correlator
- Import entries to an active list
- Searching alerts
- Closing alerts
- Searching assets
- Importing assets
- Deleting assets
- Searching events
- Viewing information about the cluster
- Resource search
- Loading resource file
- Viewing the contents of a resource file
- Importing resources
- Exporting resources
- Downloading the resource file
- Search for services
- Tenant search
- View token bearer information
- Dictionary updating in services
- Dictionary retrieval
- Appendices
- Commands for components manual starting and installing
- Integrity check of KUMA files
- Normalized event data model
- Alert data model
- Asset data model
- User account data model
- Audit event fields
- Event fields with general information
- User was successfully signed in or failed to sign in
- User login successfully changed
- User role was successfully changed
- Other data of the user was successfully changed
- User successfully logged out
- User password was successfully changed
- User was successfully created
- User access token was successfully changed
- Service was successfully created
- Service was successfully deleted
- Service was successfully reloaded
- Service was successfully restarted
- Service was successfully started
- Service was successfully paired
- Service status was changed
- Storage partition was deleted by user
- Storage partition was deleted automatically due to expiration
- Active list was successfully cleared or operation failed
- Active list item was successfully deleted or operation was unsuccessful
- Active list was successfully imported or operation failed
- Active list was exported successfully
- Resource was successfully added
- Resource was successfully deleted
- Resource was successfully updated
- Asset was successfully created
- Asset was successfully deleted
- Asset category was successfully added
- Asset category was deleted successfully
- Settings were updated successfully
- Information about third-party code
- Trademark notices
- Glossary
Storage
A KUMA storage is used to store normalized events so that they can be quickly and continually accessed from KUMA for the purpose of extracting analytical data. Access speed and continuity are ensured through the use of the ClickHouse technology. This means that a storage is a ClickHouse cluster bound to a KUMA storage service.
Storage components: clusters, shards, replicas, and keepers.
A ClickHouse cluster is a logical group of machines that possess all accumulated normalized KUMA events. It consists of one or more logical shards.
A shard is a logical group of machines that possess a specific portion of all normalized events accumulated in the cluster. It consists of one or more replicas. Increasing the number of shards lets you do the following:
- Accumulate more events by increasing the total number of servers and disk space.
- Absorb a larger stream of events by distributing the load associated with an influx of new events.
- Reduce the time taken to search for events by distributing search areas among multiple machines.
A replica is a machine that is a member of the logical shard and possesses a copy of the data of this shard. If there are multiple replicas, there are multiple copies (data is replicated). Increasing the number of replicas lets you do the following:
- Improve fault tolerance.
- Distribute the total load related to data searches among multiple machines (although it's best to increase the number of shards for this purpose).
A keeper is a machine that coordinates data replication at the cluster level. There must be at least one machine with this role for the entire cluster. The recommended number of the machines with this role is 3. The number of machines involved in coordinating replication must be an odd number. The keeper and replica roles can be combined in one machine.
When choosing a ClickHouse cluster configuration, consider the specific event storage requirements of your organization. For more information, please refer to the ClickHouse documentation.
In repositories, you can create spaces. The spaces enable to create a data structure in the cluster and, for example, store the events of a certain type together.